Лог элементы. Цифровые логические элементы

Логические элементы могут работать как с положительными напряжениями, так и с отрицательными напряжениями. На рис.10.3 приведены временные диаграммы таких напряжений.

Рис.10.3. Временные диаграммы работы логических элементов с положительными и отрицательными напряжениями

Логические элементы ИЛИ и И можно реализовать с помощью диодов.

На рисунках 10.4 и 10.5 приведены электрические схемы логических элементов ИЛИ, построенных на диодах с использованием положительных и отрицательных напряжений.

Рассмотрим работу схемы рис.10.4. Если на входы диодов х1 и х2 подавать сигналы лог.0 , то диоды VD1 и VD2 будут закрыты и на выходе y cхемы появится лог.0 . Если на один из входов, например на Вх.1, подать положительное напряжение лог.1 , а на Вх.2 – лог.0 , то диод VD1 откроется и через нагрузку пойдёт ток, на выходе y появится сигнал лог.1 . При этом диод VD2 будет закрыт.

Рис.10.4. Диодная схема логического элемента ИЛИ с положительными

напряжениями

Рис.10.5. Диодная схема логического элемента ИЛИ с отрицательными

напряжениями

Аналогично работает схема, приведённая на рис.10.5. Входные и выходные сигналы схемы будут соответствовать таблице истинности:

На рис.10.6 изображена электрическая схема логического элемента И, построенная на диодах VD1 , VD2 и ограничительном резисторе R . Cхема питается от источника постоянного тока.

Если логические сигналы на одном из входов х1 и х2 или на двух входах элемента соответствуют лог. 0 , то сигнал на выходе схемы будет также равен лог.0 . Это происходит потому, что один из диодов или оба диода будут открыты и ток проходит от +E через резистор R , один или два диода, вход или два входа элемента к -E . При этом внутренние сопротивления входов малы Rвн.вх.. Если на входах х1 и х2 появятся сигналы лог.1 , то на выходе y элемента также появляется сигнал лог.1 , так как диоды VD1 , VD2 закрыты положительными напряжениями входных сигналов.

2.1 Основные определения

Электронные схемы, построенные только на логике, называют комбинационными. Выход или выходы зависят только от комбинации переменных на входах.

В отличие от таких же схем, содержащих элементы памяти (например, триггеры), которые называют последовательностными. Последовательностные, так как выход (выходы) зависят не только от комбинации переменных, но и от состояния элементов памяти (последовательности записи в них).

Выделяют три основных вида логических элементов: 1 Выполняют операцию сложения (сумматор). Дизъюнкция.

F = x1 + x 2

F = x1 + x 2 + ... + x n

2 Выполняют операцию умножения. Конъюнкция.

F = x1 x 2 ... x n

F = x1 x2

3 Выполняют отрицание.

F = x

Логические элементы, реализующие эти операции, называют простейшими, а те, которые содержат несколько простейших, называют комбинированными.

Большая часть логических элементов сложения, умножения выполняется с отрицанием. Их типовая характеристика в статическом режиме имеет вид, изображенный на рисунке 2.1.

U пом+ U пом−

Рисунок 2.1 – Статическая характеристика логических элементов с отрицанием

U пом + – помеха, которая выводит логический элемент из устойчивого состояния

М на начало активной области в точку А (см. рисунок 2.1).

U пом − – помеха, выводящая из устойчивого состояния N в подножье активной области точки Б.

U - активная область, рабочая точка в этой области перемещается скачком,

и большинство логических элементов имеет ограничение по времени нахождения рабочей точки в этой области. Внутри между точками А и Б можно устанавливать рабочую точку только радиолюбителям.

В зависимости от цифровых величин U пом + , U пом − выделяют три вида логических схем:

- низкая помехоустойчивость (0,3÷0,4 долей вольта);

- средняя помехоустойчивость (0,4÷1 В);

- высокая помехоустойчивость (выше 1 В).

К схемам с высокой помехоустойчивостью относятся диодные логические схемы (до нескольких кВ); станковая логика (10÷15 В); комплементарная логика КМОП (6÷8 В).

По быстродействию выделяют четыре типа:

- время задержки менее 5 нс – сверхбыстродействие;

- 5÷10 нс – быстродействующая логика;

- 10÷50 нс – малое быстродействие;

- более 50 нс – медленнодействующие логические схемы.

Важным параметром является потребление мощности.

1 Выделяют микромощные логические схемы от одного до десятков мкВт на корпус. Обычно это КМОП–логика (см. КМОП–ключи) или логика с инжекционным питанием.

2 Логика со средним потреблением мощности от одного до десятков мВт на корпус. Обычно это ТТЛ–логика.

3 Логика с высоким потреблением мощности (сотни мВт на корпус).

Ранее была тенденция: чем больше потребление, тем выше быстодействие, потому что элементы транзисторов различных типов переключаются наиболее быстро в активной области (в этой области наибольшее потребление).

Выделяют

диодные логические схемы (наиболее простые);

транзисторно–транзисторные (ТТЛ–логика);

эмиттерно–связная логика (ЭСЛ) – разновидность ТТЛ, отличие в эмиттерных связях, режиме и отрицательном питании, поэтому логику еще называют отрицательной в отличие от положительной логики ТТЛ (+2...5В). Для соединения, согласования их друг с другом, применяют схемы согласования ПУ (преобразователи уровня К500, ПУ124, ПУ125, К176 ПУ1, ПУ10).

логика с инжекционным питанием И 2 Л – разновидность ТТЛ–логики (И2 – интегральная с инжекционным питанием).

– КМОП–логика – разновидность ТТЛ, но на УТ разного типа проводимости.

ОПТЛ – (оптронные связи, транзисторная логика) дает гальваническую развязку.

логика ПТШ, использующая полевые транзисторы Шоттки.

логические матрицы.

По температурному запасу выделяют

микросхемы широкого применения с температурным диапазоном -10°С…+70°С

микросхемы специального применения -60°С… +125°С

Выделяют также по числу входов и по нагрузочной способности

с малым числом входов m до десяти

с большим числом входов – свыше десяти

с малой нагрузочной способностью n, равной единице.

Под нагрузочной способностью подразумевают количество однотипных логических схем, которые можно подключить к выходу точно такой же логической схемы. Малую нагрузочную способность имеют пассивные логические схемы.

со средней нагрузочной способностью n до десяти

с высокой нагрузочной способностью n>10

2.2 Диодные логические схемы

Это самые простые схемы, имеют наивысшую помехоустойчивость. Число входов в среднем достигает десяти. Нагрузкой обычно является один элемент. Имеется ввиду, что нагрузка - точно такой же ЛЭ. Малая нагрузочная способность потому, что эти схемы относятся к пассивным, нет усилителей мощности. Частотный диапазон невысокий (до 1 МГц), так как объединенные параллельные диодные входы эквивалентны объединению параллельных конденсаторов, которые заряжаются, разряжаются. На это необходимо время, снижается быстродействие.

На рисунке 2.2 представлена диодно–логическая схема сложения.

Рисунок 2.2 – Диодно–логическая схема сложения

Возможны два состояния:

1 Входы соединены с землей через открытые выходы таких же логических схем. Иногда принимают это состояние эквивалентным соединению всех входов с землей посредством проводников.

2 Для того, чтобы открыть диоды необходимо подать напряжение, уровень которого в несколько раз больше зоны нечувствительности диодов.

5 В – минимальное стандартное напряжение, но оно может быть и 500 В и 5 кВ, если диоды высоковольтные. В этом случае и нагрузочная способность может быть больше единицы, но потребление схем становится большим.

Схема работает следующим образом. Принимаем, что на вход Х1 подается высокий уровень напряжения, который называется единицей. Этот уровень должен поступать с выхода точно такой же логической схемы, или каким-то другим способом, имитирующим те же условия. Но так как единица поступает только на вход Х1, то на остальных входах Х2…Хn должны быть нули. Они тоже должны быть организованы выходами таких же логических схем. В простейшем случае это могут быть проводники (перемычки), соединяющие входы Х2…Хn с землей. Следовательно, диод VD1 будет открыт, высокий уровень Х1 через VD1 проходит на выход, на котором выделяется также этот высокий уровень, из которого вычитается падение напряжения на диоде. Т.е. на выходе будет уже меньший высокий уровень, тем не менее, его называют единицей. Диоды VD2… VDn в это время будут закрыты, так как на входах Х2…Хn низкие уровни, их барьерные емкости включены параллельно, накапливают заряд.

Если теперь подать высокий уровень на вход Х2, то откроется VD2 но состояние выхода F почти не изменится, т.е. там сохраняется высокий уровень – единица. То же самое будет при подаче единицы на все входы одновременно. Таким образом, удовлетворяется операция логического сложения.

Принцип двойственности состоит здесь в том, что если единицами назвать низкие уровни на входах и на выходе, то эта логическая схема сложения будет выполнять логическую операцию умножения (см. рисунок 2.2).

В данной статье расскажем что такое логические элементы, рассмотрим самые простые логические элементы.

Любое цифровое устройство — персональный компьютер, или современная система автоматики состоит из цифровых интегральных микросхем (ИМС), которые выполняют определённые сложные функции. Но для выполнения одной сложной функции необходимо выполнить несколько простейших функций. Например, сложение двух двоичных чисел размером в один байт происходит внутри цифровой микросхемы называемой «процессор» и выполняется в несколько этапов большим количеством логических элементов находящихся внутри процессора. Двоичные числа сначала запоминаются в буферной памяти процессора, потом переписываются в специальные «главные» регистры процессора, после выполняется их сложение, запоминание результата в другом регистре, и лишь после результат сложения выводится через буферную память из процессора на другие устройства компьютера.

Процессор состоит из функциональных узлов: интерфейсов ввода-вывода, ячеек памяти – буферных регистров и «аккумуляторов», сумматоров, регистров сдвига и т.д. Эти функциональные узлы состоят из простейших логических элементов, которые, в свою очередь состоят из полупроводниковых транзисторов, диодов и резисторов. При конструировании простых триггерных и других электронных импульсных схем, сложные процессоры не применить, а использовать транзисторные каскады – «прошлый век». Тут и приходят на помощь – логические элементы .

Логические элементы , это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Для того, чтобы разобраться, что такое логические элементы , мы будем рассматривать самые простейшие из них. А потом, наращивая знания, разберёмся и с более сложными цифровыми элементами.

Начнём с того, что единица цифровой информации это «один бит». Он может принимать два логических состояния – логический ноль «0», когда напряжение равно нулю (низкий уровень), и состояние логической единицы «1», когда напряжение равно напряжению питания микросхемы (высокий уровень).

Поскольку простейший логический элемент это электронное устройство, то это означает, что у него есть входы (входные выводы) и выходы (выходные выводы). И входов и выходов может быть один, а может быть и больше.

Для того, чтобы понять принципы работы простейших логических элементов используется «таблица истинности» . Кроме того, для понимания принципов работы логических элементов, входы, в зависимости от их количества обозначают: Х1, Х2, … ХN, а выходы: Y1, Y2, … YN.

Функции, выполняемые простейшими логическими элементами, имеют названия. Как правило, впереди функции ставится цифра, обозначающая количество входов. Простейшие логические элементы всегда имеют лишь один выход.

Рассмотрим простейшие логические элементы

Добавив к элементу «2И» элемент «НЕ» мы получили элемент «2И-НЕ». Так можно собрать схему, если нам необходим элемент «2И-НЕ», а у нас в распоряжении имеются только элементы «2И» и «НЕ».

Добавив к элементу «2И-НЕ» элемент «НЕ» мы получили элемент «2И». Так можно собрать схему, если нам необходим элемент «2И», а у нас в распоряжении имеются только элементы «2И-НЕ» и «НЕ».

Аналогичным образом, путём соединения входов элемента «2И-НЕ» мы можем получить элемент «НЕ»:

Обратите внимание, что было введено новое в обозначении элементов – дефис, разделяющий правую и левую часть в названии «2И-НЕ». Этот дефис непременный атрибут при инверсии на выходе (функции «НЕ»).

По аналогии с элементом «2И-НЕ», путём соединения входов элемента «2ИЛИ-НЕ» мы можем получить элемент «НЕ»:

Вышеперечисленные логические элементы выполняют статические функции, а на основе них строятся более сложные статические и динамические элементы (устройства): триггеры, регистры, счётчики, шифраторы, дешифраторы, сумматоры, мультиплексоры.

Для выполнения логических операций и решать логические задачи с помощью средств электроники были изобретены логические элементы. Их создают с помощью диодов, транзисторов и комбинированных элементов (диодно-транзисторные). Такая логика получила название диодной логики (ДЛ), транзисторной (ТЛ) и диодно–транзисторной (ДТЛ). Используют как полевые, так и биполярные транзисторы. В последнем случае предпочтение отдается устройствам типа n-p-n, так как они обладают большим быстродействием.

Логический элемент «ИЛИ»

Схема логического элемента «ИЛИ» представлена на рисунке 1 а. На каждый из входов может подаваться сигнал в виде какого-то напряжения (единица) или его отсутствия (ноль). На резисторе R появиться напряжение даже при его появлении на каком – либо из диодов.

Элементы или могут иметь несколько логических входов. Если используются не все входы, то те входы которые не используются следует соединять с землей (заземлять), чтобы избежать появления посторонних сигналов.

На рисунке 1б показано обозначение на электрической схеме элемента, а на 1в таблица истинности.

Логический элемент «И»

Схема элемента приведена на рис. 2. Если хотя – бы к одному из входов будет сигнал равный нулю, то через диод будет протекать ток. Падение напряжения на диоде стремится к нулю, соответственно на выходе тоже будет ноль. На выходе сможет появится сигнал только при условии, что все диоды будут закрыты, то есть на всех входах будет сигнал. Рассчитаем уровень сигнала на выходе устройства:


на рис. 2 б – обозначение на схеме, в – таблица истинности.

Логический элемент «НЕ»

В логическом элементе «НЕ» используют транзистор (рис.3 а). при наличии положительного напряжения на входе х=1 транзистор открывается и напряжение его коллектора стремится к нулю. Если х=0 то положительного сигнала на базе нет, транзистор закрыт, ток не проходит через коллектор и на резисторе R нет падения напряжения, соответственно на коллекторе появится сигнал Е. условное обозначение и таблица истинности приведены на рис. 3 б,в.


Логический элемент «ИЛИ-НЕ»

При создании различных схем на логических элементах часто применяют элементы комбинированные. В таких элементах совмещены несколько функций. Принципиальная схема показана на рис. 4 а.


Здесь диоды Д1 и Д2 выполняют роль элемента «ИЛИ», а транзистор играет роль инвертора. Обозначение элемента на схеме и его таблица истинности рис. 4б и в соответственно.

Логический элемент «И-НЕ»

Показана схема на рис. 5 а. Здесь диод Д3 выполняет роль так сказать фильтра во избежание искажения сигнала. Если на вход х1 или х2 не подан сигнал (х1=0 или х2=0), то через диод Д1 или Д2 будет протекать ток. Падение на нем не равно нулю и может оказаться достаточным для открытия транзистора. Последствием чего может стать ложное срабатывание и на выходе вместо единицы мы получим ноль. А если в цепь включить Д3, то на нем упадет значительная часть напряжения открытого на входе диода, и на базу транзистора практически ничего не приходит. Поэтому он будет закрыт, а на выходе будет единица, что и требуется при наличии нуля на каком либо из входов. На рис. 5б и в показаны таблица истинности и схемное обозначение данного устройства.


Логические элементы получили широчайшее применение в электронике и микропроцессорной технике. Многие системы управления строятся с использованием именно этих устройств.

Логические схемы

Основные понятия алгебры логики

Логической основой компьютера является алгебра логика, которая рассматривает логические операции над высказываниями.

Алгебра логика – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Основные понятия алгебры логики

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример: «3 – простое число» является высказыванием, поскольку оно истинно.

Не всякое предложение является логическим высказыванием.

Пример: предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Основные понятия алгебры логики

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример: «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной.

Алгебра логика рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным.

Основные понятия алгебры логики

Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются

логическими связками.

Основные понятия алгебры логики

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными) . Высказывания, которые не являются составными, называются

элементарными (простыми ).

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Основные понятия алгебры логики

Чтобы обращаться к логическим высказываниям, им назначают имена .

Пример: Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Основные понятия алгебры логики

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1. Основные логические операции

Обозначение

Читается

Название операции

Альтернативные

операции

обозначения

Отрицание

Черта сверху

(инверсия)

конъюнкция

дизъюнкция

Импликация

Эквиваленция

только тогда

Либо…либо

Исключающее ИЛИ

(сложение по

Основные понятия алгебры логики

НЕ Операция, выражаемая словом «не», называетсяотрицанием и обозначается чертой над высказыванием (или знаком ¬). Высказывание ¬А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда ¬А=«Сегодня не пасмурно».

Понравилась статья? Поделитесь с друзьями!