Кислород физические свойства и применение. Кислород в природе (49,4% в Земной коре)

Пожалуй, среди всех известных химических элементов, именно кислород занимает ведущее значение, ведь без него попросту было бы невозможным возникновение жизни на нашей планете. Кислород – самый распространенный химический элемент на Земле, на его долю приходится 49% от общей массы земной коры. Также он входит в состав земной атмосферы, состав воды и состав более 1400 различных минералов, таких как базальт, мрамор, силикат, кремнезем и т. д. Примерно 50-80% общей массы тканей, как животных, так и растений состоит из кислорода. И, разумеется, общеизвестна его роль для дыхания всего живого.

История открытия кислорода

Люди далеко не сразу постигли природу кислорода, хотя первые догадки о том, что в основе воздуха лежит некий химический элемент, появились еще в VIII веке. Однако в то далекое время не было ни подходящих технических инструментов для его изучения, ни возможности доказать существования кислорода, как газа, отвечающего в том числе за процессы горения.

Открытие кислорода состоялось лишь спустя тысячелетие, в ХVIII веке, благодаря совместной работе нескольких ученых.

  • В 1771 шведский химик Карл Шееле опытным путем исследовал состав воздуха, и определил, что воздух состоит из двух основных газов: одним из этих газов был азот, а вторым, собственно кислород, правда на то время само название «кислород» еще не появилось в науке.
  • В 1775 году французский ученый А. Лувазье дал название открытому Шееле газу – кислород, он же оксиген в латыни, само слово «оксиген» означает «рождающий кислоты».
  • За год до официальных «именин кислорода», в 1774 году английский химик Пристли путем разложение ртутного оксида впервые получает чистый кислород. Его опыты подкрепляют открытие Шееле. К слову сам Шееле также пытался получить кислород в чистом виде путем нагревания селитры, но у него не получилось.
  • Более чем через столетия в 1898 году английский физик Джозеф Томпсон впервые заставил общественность задуматься, о том, что запасы кислорода могут закончиться вследствие интенсивных выбросов углекислого газа в атмосферу.
  • В этом же году русский биолог Климент Тимирязев, исследователь , открывает свойство растений выделять кислород.

Хотя растения и выделяют кислород в атмосферу, но проблема поставленная Томпсоном о возможной нехватки кислорода в будущем, остается актуальной и в наше время, особенно в связи с интенсивной вырубкой лесов (поставщиков кислорода), загрязнением окружающей среды, сжиганием отходов и прочая. Больше об этом мы писали в прошлой об экологических проблемах современности.

Значение кислорода в природе

Именно наличие кислорода, в сочетании с водой привело к тому, что на нашей планете стало возможным возникновение жизни. Как мы заметили выше, основными поставщиками этого уникального газа являются различные растения, в том числе наибольшее количество выделяемого кислорода приходится на подводные водоросли. Выделяют кислород и некоторые виды бактерий. Кислород в верхних слоях атмосферы образует озоновый шар, который защищает всех жителей Земли от вредного ультрафиолетового солнечного излучения.

Строение молекулы кислорода

Молекула кислорода состоит из двух атомов, химическая формула имеет вид О 2 . Как образуется молекула кислорода? Механизм ее образования неполярный, другими словами за счет обобществления электроном каждого атома. Связь между молекулами кислорода также ковалентная и неполярная, при этом она двойная, ведь у каждого из атомов кислорода есть по два неспаренных электрона на внешнем уровне.

Так выглядит молекула кислорода, благодаря своим характеристикам она весьма устойчива. Для многих с ее участием нужны специальные условия: нагревание, повышенное давление, применение катализаторов.

Физические свойства кислорода

  • Прежде всего, кислород является газом, из которого состоит 21% воздуха.
  • Кислород не имеет ни цвета, ни вкуса, ни запаха.
  • Может растворяться в органических веществах, поглощаться углем и порошками .
  • - Температура кипения кислорода составляет -183 С.
  • Плотность кислорода равна 0,0014 г/см 3

Химические свойства кислорода

Главным химическим свойством кислорода является, конечно же, его поддержка горения. То есть в вакууме, где нет кислорода, огонь не возможен. Если же в чистый кислород опустить тлеющую лучину, то она загорится с новой силой. Горение разных веществ это окислительно-восстановительный химический процесс, в котором роль окислителя принадлежит кислороду. Окислители же это вещества, «отбирающие» электроны у веществ восстановителей. Отличные окислительные свойства кислорода обусловлены его внешней электронной оболочкой.

Валентная оболочка у кислорода расположена близко к ядру и как следствие ядро притягивает к себе электроны. Также кислород занимает второе место после фтора по шкале электроотрицательности Полинга, по этой причине вступая в химические реакции со всеми другими элементами (за исключением фтора) кислорода выступает отрицательным окислителем. И лишь вступая в реакции со фтором кислород имеет положительное окислительное воздействие.

А так как кислород второй окислитель по силе среди всех химических элементов таблицы Менделеева, то это определяет и его химические свойства.

Получение кислорода

Для получения кислорода в лабораторных условиях применяют метод термической обработки либо пероксидов либо солей кислосодержащих кислот. Под действием высокой температуры они разлагаются с выделением чистого кислорода. Также кислород можно получить с помощью перекиси , даже 3% раствор перекиси под действие катализатор мгновенно разлагается, выделяя кислород.

2KC l O 3 = 2KC l + 3O 2 — вот так выглядит химическая реакция получения кислорода.

Также в промышленности в качестве еще одного способа получения кислорода применяют электролиз воды, во время которого молекулы воды раскладываются, и опять таки выделяется чистый кислород.

Использование кислорода в промышленности

В промышленности кислород активно применяется в таких сферах как:

  • Металлургия (при сварке и вырезке металлов).
  • Медицина.
  • Сельское хозяйство.
  • Как ракетное топливо.
  • Для очищения и обеззараживания воды.
  • Синтеза некоторых химических соединений, включая взрывчатые вещества.

Кислород, видео

И в завершение образовательное видео про кислород.

8 О 1s 2 2s 2 2p 4 ; А r = 15,999 Изотопы: 16 O (99,759 %); 17 О (0,037 %); 18 О (0,204 %); ЭО - 3,5


Кларк в земной коре 47% по массе; в гидросфере 85,82% по массе; в атмосфере 20,95% по объему.


Самый распространенный элемент.


Формы нахождения элемента: а) в свободном виде - О 2 , О 3 ;


б) в связанном виде: анионы О 2- (преимущественно)


Кислород - типичный неметалл, p-элемент. Валентность = II; степень окисления -2 (за исключением Н 2 О 2 , OF 2 , O 2 F 2)

Физические свойства O 2

Молекулярный кислород O 2 при обычных условиях находится в газообразном состоянии, не имеет цвета, запаха и вкуса, малорастворим в воде. При глубоком охлаждении под давлением конденсируется в бледно - голубую жидкость (Тkип - 183°С), которая при -219°С превращается в кристаллы сине - голубого цвета.

Способы получения

1. Кислород образуется в природе в поцессе фотосинтеза mCО 2 + nH 2 O → mO 2 + Сm(H 2 O)n


2. Промышленное получение


а) ректификация жидкого воздуха (отделение от N 2);


б) электролиз воды: 2H 2 O → 2Н 2 + О 2


3. В лаборатории получают термическим окислительно-восстановительным разложением солей:


а) 2КСlO 3 = 3О 2 + 2KCI


б) 2КМпO 4 = О 2 + МпО 2 + К 2 МпО 4


в) 2KNO 3 = О 2 + 2KNО 2


г) 2Cu(NO 3)O 2 = О 2 + 4NО 2 + 2CuO


д) 2AgNO 3 = О 2 + 2NО 2 +2Ag


4. В герметически замкнутых помещениях и в аппаратах для автономного дыхания кислород получают реакцией:


2Na 2 O 2 + 2СO 2 = О 2 + 2Na 2 CO 3

Химические свойства кислорода

Кислород - сильный окислитель. По химической активности уступает только фтору. Образует соединения со всеми элементами, кроме Не, Ne и Аг. Непосредственно реагирует с большинством простых веществ при обычных условиях или при нагревании, а также в присутствии катализаторов (исключение - Au, Pt, Hal 2 , благородные газы). Реакции с участием О 2 в большинстве случаев экзотермичны, часто протекают в режиме горения, иногда - взрыва. В результате реакций образуются соединения, в которых атомы кислорода, как правило, имеют С.О. -2:

Окисление щелочных металлов

4Li + О 2 = 2Li 2 O оксид лития


2Na + О 2 = Na 2 О 2 пероксид натрия


К + О 2 = КО 2 супероксид калия

Окисление всех металлов, кроме Au, Pt

Me + О 2 = Ме x O y оксиды

Окисление неметаллов, кроме галогенов и благородных газов

N 2 +О 2 = 2NO - Q


S + О 2 = SО 2 ;


C + О 2 = CО 2 ;


4Р + 5О 2 = 2Р 2 О 5


Si + О 2 = SiО 2

Окисление водородных соединений неметаллов и металлов

4HI + О 2 = 2I 2 + 2Н 2 O


2H 2 S + 3О 2 =2SО 2 + 2Н 2 O


4NH 3 + 3О 2 =2N 2 + 6Н 2 O


4NH 3 + 5О 2 = 4NO + 6Н 2 O


2PH 3 + 4О 2 = P 2 О 5 + 3Н 2 O


SiH 4 + 2О 2 = SiО 2 + 2Н 2 O


C x H y + О 2 = CО 2 + Н 2 O


MeH x + 3О 2 = Me x O y + Н 2 O

Окисление низших оксидов и гидроксидов поливалентных металлов и неметаллов

4FeO + О 2 = 2Fe 2 О 3


4Fe(OH) 2 +О 2 + 2H 2 O = 4Fe(OH) 3


2SО 2 + О 2 = 2SО 3


4NО 2 + О 2 + 2H 2 O = 4HNО 3

Окисление сульфидов металлов

4FeS 2 + 11О 2 = 8SО 2 + 2Fe 2 О 3

Окисление органических веществ

Все органические соединения горят, окисляясь кислородом воздуха.


Продуктами окисления различных элементов, входящих в их молекулы, являются:








Кроме реакций полного окисления (горения) возможны также реакции неполного окисления.


Примеры реакций неполного окисления органических веществ:


1) каталитическое окисление алканов

2) каталитическое окисление алкенов



3) окисление спиртов


2R-CH 2 OH + O 2 → 2RCOH + 2Н 2 O


4) окисление альдегидов

Озон

Озон О 3 - более сильный окислитель, чем O 2 , так как в процессе реакции его молекулы распадаются с образованием атомарного кислорода.


Чистый О 3 - газ синего цвета, очень ядовит.


К + О 3 = КО 3 озонид калия, красного цвета.


PbS + 2О 3 = PbSО 4 + О 2


2KI + О 3 + Н 2 O = I 2 + 2КОН + О 2


Последняя реакция используется для качественного и количественного определения озона.

КИСЛОРОД (латинский Oxygenium), О, химический элемент VI группы короткой формы (16-й группы длинной формы) периодической системы, относится к халькогенам; атомный номер 8, атомная масса 15,9994. Природный кислород состоит из трёх изотопов: 16 О (99,757%), 17 О (0,038%) и 18 О (0,205%). Преобладание в смеси изотопов наиболее лёгкого 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. Равное число протонов и нейтронов обусловливает высокую энергию их связи в ядре и наибольшую стабильность ядер 16 О по сравнению с остальными. Искусственно получены радиоизотопы с массовыми числами 12-26.

Историческая справка. Кислород получили в 1774 году независимо К. Шееле (путём прокаливания нитратов калия КNО 3 и натрия NaNO 3 , диоксида марганца MnO 2 и других веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb 3 О 4 и оксида ртути HgO). Позднее, когда было установлено, что кислород входит в состав кислот, А. Лавуазье предложил название oxygène (от греческого όχύς - кислый и γεννάω - рождаю, отсюда и русское название «кислород»).

Распространённость в природе. Кислород - самый распространённый химический элемент на Земле: содержание химически связанного кислорода в гидросфере составляет 85,82% (главным образом в виде воды), в земной коре -49% по массе. Известно более 1400 минералов, в состав которых входит кислород. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы - карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (например, известняк, мрамор), а также различные оксиды природные, гидроксиды природные и горные породы (например, базальт). Молекулярный кислород составляет 20,95% по объёму (23,10% по массе) земной атмосферы. Кислород атмосферы имеет биологическое происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество кислорода, выделяемое растениями, компенсирует количество кислорода, расходуемое в процессах гниения, горения, дыхания.

Кислород - биогенный элемент - входит в состав важнейших классов природных органических соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганических соединений скелета.

Свойства . Строение внешней электронной оболочки атома кислорода 2s 2 2р 4 ; в соединениях проявляет степени окисления -2, -1, редко +1, +2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О 2 -121 пм (координационное число 2). В газообразном, жидком и твёрдом состояниях кислород существует в виде двухатомных молекул О 2 . Молекулы О 2 парамагнитны. Существует также аллотропная модификация кислорода - озон, состоящая из трёхатомных молекул О 3 .

В основном состоянии атом кислорода имеет чётное число валентных электронов, два из которых не спарены. Поэтому кислород, не имеющий низкой по энергии вакантной d-opбитали, в большинстве химических соединений двухвалентен. В зависимости от характера химической связи и типа кристаллической структуры соединения координационное число кислорода может быть разным: О (атомарный кислород), 1 (например, О 2 , СО 2), 2 (например, Н 2 О, Н 2 О 2), 3 (например, Н 3 О +), 4 (например, оксоацетаты Be и Zn), 6 (например, MgO, CdO), 8 (например, Na 2 О, Cs 2 О). За счёт небольшого радиуса атома кислород способен образовывать прочные π-связи с другими атомами, например с атомами кислорода (О 2 , О 3), углерода, азота, серы, фосфора. Поэтому для кислорода одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).

Парамагнетизм молекул О 2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О 2 равен 2, т. е. связь между атомами кислорода двойная. Если при фотохимическом или химическом воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома кислорода два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О-О: от 120,74 пм в основном состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О-О и к усилению химической активности кислорода. Оба возбуждённых состояния молекулы О 2 играют важную роль в реакциях окисления в газовой фазе.

Кислород - газ без цвета, запаха и вкуса; t пл -218,3 °С, t кип -182,9 °С, плотность газообразного кислорода 1428,97 кг/дм 3 (при 0 °С и нормальном давлении). Жидкий кислород - бледно-голубая жидкость, твёрдый кислород - синее кристаллическое вещество. При 0 °С теплопроводность 24,65-10 -3 Вт/(мК), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрическая проницаемость газообразного кислорода 1,000547, жидкого 1,491. Кислород плохо растворим в воде (3,1% кислорода по объёму при 20°С), хорошо растворим в некоторых фторорганических растворителях, например перфтордекалине (4500% кислорода по объёму при 0 °С). Значительное количество кислорода растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °С) резко понижается с уменьшением температуры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.

Кислород обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в основном с образованием соответствующих оксидов (многие реакции, протекающие медленно при комнатной и более низких температурах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). Кислород взаимодействует при нормальных условиях с водородом (образуется вода Н 2 О; смеси кислорода с водородом взрывоопасны - смотри Гремучий газ), при нагревании - с серой (серы диоксид SO 2 и серы триоксид SO 3), углеродом (углерода оксид СО, углерода диоксид СО 2), фосфором (фосфора оксиды), многими металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в основном пероксиды и надпероксиды металлов, например пероксид бария ВаО 2 , надпероксид калия КО 2). С азотом кислород взаимодействует при температуре выше 1200 °С или при воздействии электрического разряда (образуется монооксид азота NO). Соединения кислорода с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. Кислород не образует химических соединений с гелием, неоном и аргоном. Жидкий кислород также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органические вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.

Кислород образует три ионные формы, каждая из которых определяет свойства отдельного класса химических соединений: О 2 - супероксидов (формальная степень окисления атома кислорода -0,5), О 2 - - пероксидных соединений (степень окисления атома кислорода -1, например водорода пероксид Н 2 О 2), О 2- - оксидов (степень окисления атома кислорода -2). Положительные степени окисления +1 и +2 кислород проявляет во фторидах О 2 F 2 и OF 2 соответственно. Фториды кислорода неустойчивы, являются сильными окислителями и фторирующими реагентами.

Молекулярный кислород является слабым лигандом и присоединяется к некоторым комплексам Fe, Со, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина - белка, который осуществляет перенос кислорода в организме теплокровных.

Биологическая роль . Кислород как в свободном виде, так и в составе различных веществ (например, ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислительных процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.

Получение . В промышленных масштабах кислород производят путём сжижения и фракционной перегонки воздуха (смотри в статье Воздуха разделение), а также электролизом воды. В лабораторных условиях кислород получают разложением при нагревании пероксида водорода (2Р 2 О 2 = 2Н 2 О + О 2), оксидов металлов (например, оксида ртути: 2HgO = 2Hg + О 2), солей кислородсодержащих кислот-окислителей (например, хлората калия: 2КlO 3 = 2KCl + 3О 2 , перманганата калия: 2KMnO 4 = К 2 MnO 4 + MnO 2 + О 2), электролизом водного раствора NaOH. Газообразный кислород хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий кислород - в металлических сосудах Дьюара или в специальных цистернах-танках.

Применение . Технический кислород используют как окислитель в металлургии (смотри, например, Кислородно-конвертерный процесс), при газопламенной обработке металлов (смотри, например, Кислородная резка), в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый кислород используют в кислородно-дыхательных аппаратах на космических кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (смотри в статье Оксигенотерапия). Жидкий кислород применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного кислорода в некоторых фторорганических растворителях предложено использовать в качестве искусственных кровезаменителей (например, перфторан).

Лит.: Saunders N. Oxygen and the elements of group 16. Oxf., 2003; Дроздов А. А., Зломанов В. П., Мазо Г. Н., Спиридонов Ф. М. Неорганическая химия. М., 2004. Т. 2; Шрайвер Д., Эткинс П. Неорганическая химия. М., 2004. Т. 1-2.

>>

Химические свойства кислорода. Оксиды

В этом параграфе речь идет:

> о реакциях кислорода с простыми и сложными веществами;
> о реакциях соединения;
> о соединениях, которые называют оксидами.

Химические свойства каждого вещества проявляются в химических реакциях при его участии.

Кислород - один из наиболее активных неметаллов. Ho в обычных условиях он реагирует с немногими веществами. Его реакционная способность существенно возрастает с повышением температуры.

Реакции кислорода с простыми веществами.

Кислород реагирует, как правило, при нагревании, с большинством неметаллов и почти со всеми металлами.

Реакция с углем (углеродом). Известно, что уголь, нагретый на воздухе до высокой температуры, загорается. Это свидетельствует о протекании химической реакции вещества с кислородом. Теплоту, которая выделяется при этом, используют, например, для обогрева домов в сельской местности.

Основным продуктом сгорания угля является углекислый газ. Его химическая формула - CO 2 . Уголь - смесь многих веществ. Массовая доля Карбона в нем превышает 80 % . Считая, что уголь состоит только из атомов Карбона, напишем соответствующее химическое уравнение:

t
С + O 2 = CO 2 .

Карбон образует простые вещества - графит и алмаз. Они имеют общее название - углерод - и взаимодействуют с кислородом при нагревании согласно приведенному химическому уравнению 1 .

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

Реакция с серой.

Это химическое превращение осуществляет каждый, когда зажигает спичку; сера входит в состав ее головки. В лаборатории реакцию серы с кислородом проводят в вытяжном шкафу. Небольшое количество серы (светло-желтый порошок или кристаллы) нагревают в железной ложке. Вещество сначала плавится, потом загорается в результате взаимодействия с кислородом воздуха и горит едва заметным синим пламенем (рис. 56, б). Появляется резкий запах продукта реакции - сернистого газа (этот запах мы ощущаем в момент загорания спички). Химическая формула сернистого газа - SO 2 , а уравнение реакции -
t
S + O 2 = SO 2 .

Рис. 56. Сера (а) и ее горение на воздухе (б) и в кислороде (в)

1 В случае недостаточного количества кислорода образуется другое соединение Карбона с Оксигеном - угарный газ
t
CO: 2С + O 2 = 2СО.



Рис. 57. Красный фосфор (а) и его горение на воздухе (б) и в кислороде (в)

Если ложку с горящей серой поместить в сосуд с кислородом, то сера будет гореть более ярким пламенем, чем на воздухе (рис. 56, в). Это можно объяснить тем, что молекул O 2 в чистом кислороде больше, чем в воздухе.

Реакция с фосфором. Фосфор, как и сера, горит в кислороде интенсивнее, чем на воздухе (рис. 57). Продуктом реакции является белое твердое вещество - фосфор(\/) оксид (его мелкие частицы образуют дым):
t
P + O 2 -> P 2 0 5 .

Превратите схему реакции в химическое уравнение.

Реакция с магнием.

Раньше эту реакцию использовали фотографы для создания яркого освещения («магниевая вспышка») при фотосъемке. В химической лаборатории соответствующий опыт проводят так. Металлическим пинцетом берут магниевую ленту и поджигают на воздухе. Магний сгорает ослепительно-белым пламенем (рис. 58, б); смотреть на него нельзя! В результате реакции образуется белое твердое вещество. Это соединение Магния с Оксигеном; его название - магний оксид.

Рис. 58. Магний (а) и его горение на воздухе (б)

Составьте уравнение реакции магния с кислородом.

Реакции кислорода со сложными веществами. Кислород может взаимодействовать с некоторыми оксигенсодержащими соединениями. Например, угарный газ CO горит на воздухе с образованием углекислого газа:

t
2СО + O 2 = 2С0 2 .

Немало реакций кислорода со сложными веществами мы осуществляем в повседневной жизни, сжигая природный газ (метан), спирт, древесину, бумагу, керосин и др. При их горении образуются углекислый газ и водяной пар:
t
CH 4 + 20 2 = CO 2 + 2Н 2 О;
метан
t
C 2 H 5 OH + 30 2 = 2С0 2 + 3H 2 О.
спирт


Оксиды.

Продуктами всех реакций, рассмотренных в параграфе, являются бинарные соединения элементов с Оксигеном.

Соединение, образованное двумя элементами, одним из которых является Оксиген, называют оксидом.

Общая формула оксидов - EnOm.

Каждый оксид имеет химическое название, а некоторые - еще и традиционные, или тривиальные 1 , названия (табл. 4). Химическое название оксида состоит из двух слов. Первым словом является название соответствующего элемента, а вторым - слово «оксид». Если элемент имеет переменную валентность, то он может образовывать несколько оксидов. Их названия должны отличаться. Для этого после названия элемента указывают (без отступа) римской цифрой в скобках значение его валентности в оксиде. Пример такого названия соединения: купрум(II) оксид (читается « купрум-два-оксид »).

Таблица 4

1 Термин происходит от латинского слова trivialis - обыкновенный.

Выводы

Кислород - химически активное вещество. Он взаимодействует с большинством простых веществ, а также со сложными веществами. Продуктами таких реакций являются соединения элементов с Оксигеном - оксиды.

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

?
135. Чем различаются реакции соединения и разложения?

136. Превратите схемы реакций в химические уравнения:

а) Li + O 2 -> Li 2 O;
N2 + O 2 -> NO;

б) SO 2 + O 2 -> SO 3 ;
CrO + O 2 -> Cr 2 O 3 .

137. Выберите среди приведенных формул те, которые отвечают оксидам:

O 2 , NaOH, H 2 O, HCI, I 2 O 5 , FeO.

138. Дайте химические названия оксидам с такими формулами:

NO, Ti 2 O 3 , Cu 2 O, MnO 2 , CI 2 O 7 , V 2 O 5 , CrO 3 .

Примите во внимание, что элементы, которые образуют эти оксиды, имеют переменную валентность.

139. Запишите формулы: а) плюмбум(I\/) оксида; б) хром(III) оксида;
в) хлор(I) оксида; г) нитроген(I\/) оксида; д) осмий(\/III) оксида.

140. Допишите формулы простых веществ в схемах реакций и составьте химические уравнения:

а) ... + ... -> CaO;

б) NO + ... -> NO 2 ; ... + ... -> As 2 O 3 ; Mn 2 O 3 + ... -> MnO 2 .

141. Напишите уравнения реакций, с помощью которых можно осущест­вить такие «цепочки» превращений, т. е. из первого вещества полу­чить второе, из второго - третье:

а) С -> CO -> CO 2 ;
б) P -> P 2 0 3 -> P 2 0 5 ;
в) Cu -> Cu 2 O -> CuO.

142.. Составьте уравнения реакций, которые происходят при горении на воздухе ацетона (CH 3) 2 CO и эфира (C 2 H 5) 2 O. Продуктами каждой ре­акции являются углекислый газ и вода.

143. Массовая доля Оксигена в оксиде EO 2 равна 26 %. Определите элемент Е.

144. Две колбы заполнены кислородом. После их герметизации в одной колбе сожгли избыток магния, а в другой - избыток серы. В какой колбе образовался вакуум? Ответ объясните.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

ОПРЕДЕЛЕНИЕ

Кислород – элемент второго периода VIA группы Периодической системы химических элементов Д.И. Менделеева, с атомным номером 8. Символ – О.

Атомная масса – 16 а.е.м. Молекула кислорода двухатомна и имеет формулу – О 2

Кислород относится к семейству p-элементов. Электронная конфигурация атома кислорода 1s 2 2s 2 2p 4 . В своих соединениях кислород способен проявлять несколько степеней окисления: «-2», «-1» (в пероксидах), «+2» (F 2 O). Для кислорода характерно проявление явления аллотропии – существования в виде нескольких простых веществ – аллотропных модификаций. Аллотропные модификации кислорода – кислород O 2 и озон O 3 .

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона. Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.

Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li + O 2 = 2Li 2 O;

2Na + O 2 = Na 2 O 2 ;

K + O 2 = KO 2 ;

2Ca + O 2 = 2CaO;

4Al + 3O 2 = 2Al 2 O 3 ;

2Cu + O 2 = 2CuO;

3Fe + 2O 2 = Fe 3 O 4 .

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000С в электрической дуге, в природе – при грозовом разряде). Например:

4P + 5O 2 = 2P 2 O 5 ;

С + O 2 = СО 2 ;

2Н 2 + O 2 = 2Н 2 О;

N 2 + O 2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O (t);

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (t);

4NH 3 + 5O 2 = 4NO + 6H 2 O (t, kat);

2PH 3 + 4O 2 = 2H 3 PO 4 (t);

SiH 4 + 2O 2 = SiO 2 + 2H 2 O;

4FeS 2 +11O 2 = 2Fe 2 O 3 +8 SO 2 (t).

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO + O 2 = 2CO 2 (t);

2SO 2 + O 2 = 2SO 3 (t, V 2 O 5);

2NO + O 2 = 2NO 2 ;

4FeO + O 2 = 2Fe 2 O 3 (t).

Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH 4 + 2O 2 = CO 2 +H 2 O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:

Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20С растворяется 3 л кислорода. Жидкий кислород голубого цвета, обладает парамагнитными свойствами (втягивается в магнитное поле).

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

4K 2 Cr 2 O 7 = 4K 2 CrO 4 + 2Cr 2 O 3 +3 O 2

2KNO 3 = 2KNO 2 + O 2

2KClO 3 = 2KCl +3 O 2

Примеры решения задач

ПРИМЕР 1

Задание При разложении 95 г оксида ртути (II) образовалось 4,48 л кислорода (н.у.). Вычислите долю разложившегося оксида ртути (II) (в мас. %).
Решение Запишем уравнение реакции разложения оксида ртути (II):

2HgO = 2Hg + O 2 .

Зная объем выделившегося кислорода, найдем его количество вещества:

моль.

Согласно уравнению реакции n(HgO):n(O 2) = 2:1, следовательно,

n(HgO) = 2×n(O 2) = 0,4 моль.

Вычислим массу разложившегося оксида. Количество вещества связано с массой вещества соотношением:

Молярная масса (молекулярная масса одного моль) оксида ртути (II), рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 217 г/моль. Тогда масса оксида ртути (II) равна:

m (HgO) = n (HgO) ×M (HgO) = 0,4×217 = 86,8 г.

Определим массовую долю разложившегося оксида:

Понравилась статья? Поделитесь с друзьями!